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RESEARCH MEMORANDUM

WIND-TUNNEL INVESTIGATION OF THE AERODYNAMIC
CHARACTERISTICS OF A SERIES OF SWEPT, HICGHLY TAPERED,

THIN WINGS AT TRANSONIC SPEEDS

TRANSONIC-BUMP METHOD

By Albert G. Few, Jr., and Paul G. Fournier
SUMMARY

An investigation by the transonic-bump method of the static
longitudinal aerodynamic characteristics of a series of swept, highly
tapered, thin wings has been made in the Lengley high-speed T~ by 1l0-foot
tunnel. The Mach number range extended from 0.60 to 1,.16 with corre.
sponding Reynolds numbers ranging from about 0.72 X 106 to 0.97 X 106.
The angle-of-attack range was from -10° to approximately 34O,

In general, the 1lift and drag cheracteristics varied with changes
in sweep and aspect ratlo in essentially the manner expected on the
basis of past research. The wings of smallest sweep (11.30°) provided
the least change in lateral center of pressure with 1ift but the great-
est change in longitudinal center of pressure with 1ift. Moderately
large changes In leteral center of pressure are noted when the longi-
tudinal changes in center of pressure are at a minimum. A boundary wes
established which separated highly tapered wings showing increasing
stablility with increasing 1ift from those showing decreasing stability
with increasing 1ift. The boundary so established is defined by some-
vhat smaller values of sweep angle and aspect ratio than is the boundary
esteblished on the basis of a somewhat different criterion by Shortel
and Msggin in NACA Technical Note 1093.

INTRODUCTION . .

-

In order to achleve maximum performance, particulerly at transonic
and supersonic speeds, it 1s important to utilize the thinnest airfoil
sections that can be tolerated from structural considerations. Highly
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tepered wings offer certain structural advantages over wings of less
taper and, therefore, the airfoil-section thickness ratio normally can
be reduced as the ratio of tip chord to root chord is reduced. The
identification of plan forms with essentially linear wing-alone pitching-
moment characteristics is an important phase in airplene design in that
it provides a convenient basis for selecting the most appropriate wing
to be used in conjunction with a desired tail location. From considera-
tions of the wing-alone results presented in reference 1, wings having

a zero sweep line within the region from about 0.75 to 1.00 chord in
general appear to approach most closely a linear varistion of pitching
moment with 1ift while providing a desirable stabilizing tendency Jjust
before maximum 1ift.

The investigation of reference 1 covered & series of pointed wings
of aspect ratio 4 and the same series of wings with tips clipped to glve
an aspect ratio of 3. The purpose of the present investigation was to
erence 1. Three basic pointed wings were chosen, each having an aspect
ratio of 5 and NACA 65A003 ailrfoil sections. The sweep angle was varied
to provide zero sweep lines at 0.50 chord, 0.75 chord, and 1.00 chord.
Each wing was tested in its originasl zero-taper, aspect-ratio-5 condi-
tion as well as with the tips clipped to provide aspect ratlos of 4 and
5 and taper ratios of 0.11 end 0.25, respectively.

The investligation utilized semispan models mounted on a transonic-
bump in the Langley high-speed T7- by 10-foot tunnel.

The Mach number range extended from 0.60 to 1.16 with corresponding
Reynolds numbers ranging from about 0.72 X 106 to 0.97 x 106. The results

presented herein were derived from measurements of 1ift, drag, pitching
moment, and root bending moment due to 1ift. -

COEFFICIENTS AND SYMBOLS

Twice semispan 1lift

Cy, lift coefficient,
as
Cp drag coefficient, Twice semispan drag
ofS]
CDL:O minimum drag coefficilent L
Cm pltching-moment coefficient referred to 0.258,

Twice semispan pitching moment
ysSé
WP R o
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Cp

o1

bending-moment coefficient due to 1lift about longitudinsl
Bending moment
5D

%3

stebility axes,

V2
effective dynamic pressure over span of wing, 95—, Ib/sq ft

average chordwise local dynemic pressure, Ib/sq £t
twice area of semispan wing model, sq ft

aspect ratio, b2/8

mean serodynamic chord of wing, based on relationship

b/2
2 2
§j; cdy, £t

local wing chord, ft

taper ratio

twice span of semispan model, ft

lateral distance from plane of symmetry, ft
air density, slugs/cu £t

free-gtream velocity, ft/sec

effective Mach number over span of wing

averege chordwise local Msch number

local Mach number

angle of attack, deg

wing sweep angle with respect to quarter-chord line, deg

lateral effective center-of-pressure location, SE

‘L

longitudinal effective center-of-pressure location,

- )
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MODEL AND APPARATUS

The semispan wing models used in the investigation were constructed
of gteel to the dimensions given in figure 1. The models included &
basic series of three wings all having an aspect ratio of 5, a taper

ratio of O, and NACA 65A003 airfoil sections parallel to the free stream

with quarter-chord sweep angles of 11.30°, 21.80°, and 30.97° correspond-
ing to zero-sweep lines at 0.50 chord, 0.75 chord, and 1.00 chord. The
tips of each of the basiec wings were clipped to give aspect ratios of

4 and 3 and taper ratios of 0.1l and 0.25, respectively.

A photograph of one of the models mounted on the bump in the Langley
high-speed T7- by 10-foot tunnel is shown as figure 2.  The wings were
mounted on sn electrical strain-gege balance which was enclosed in the
bump and which measured the 1ift, drag, pitching moment, and root bending
moment dvue to lift. A small gap existed between the wing root section
end balance cover plate; however, use of a sponge-rubber seal at the
base of the models minimized air leskage from within the balance chamber.

TESTS AND CORRECTIONS

The tests were made in the Langley high-speed T- by 1l0-foot tunnel;
an adaptation of the NACA wing-flow technigue was used to obtain tran-
sonic speeds. The technique used in the present investigation involves
mounting the wings in & high~velocity flow field (generated over the
curved surface of a bump, located on the tumnel floor) and is identical
to that used in reference 1.

Typical contours of local Mach nunber in the vicinity of the model
location on the bump (obtained from surveys with no model in position),
are shown in figure 3. Mach number varistions of about 0.02 existed
over the model semispan at the lowest Mach numbers and about 0.0k at
the highest Mach nmumbers; whereas, the chordwise Mach number variations
were generally less than 0.02. No attempt has been made to evaluate
the effects of the spanwise and chordwise Mach number variations. The
effective test Mach number was obtained from contour cherts similar to
those presented in figure 3 by using the relationship _ .

5 b/2 -
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Similarly, the effective dynamic pressure has been obtained from con-
tour charts by using the relationship

/2
q = éb/b cqg dy
0

Force and moment data were obtained for the wing-alone configura-
tions through a Mach nunmber range from 0.60 to 1.16, which corresponds
to & Reynolds number range from sbout 0.72 x 106 to 0.97 x 106. The
angle of sttack varied from sbout -10° to e maximum of approximetely 34O,

Jet-boundary corrections have not been evaluated, since the bound-
ary conditions to be satisfied are not rigorously defined. However,
inasmuch as the effective flow field is large in comparison with the
span and chord of the wings, the corrections are believed to be small.
No attempt has been made to correct the data for aeroelastic distortion;
however, a rough estimate of the model flexibility indicated that aero-
elastic effects should be small.

RESULTS AND DISCUSSION
Presentation of Results

Aerodynamic characteristics of the series of swept, highly tapered,
thin wings having aspect ratios of 5, 4, and 3 are presented as follows:

Basic dsta: Figure
o against Cy; Ac/h = 11.30° )3
a against Cp; Acfy = 21.80° e e e e e e e e 5
o against Cp; Ag/y =30.97° . . o oo oL 6
Cp against Op; Agjy = 11.307 . T
Cp ageinst Cp; Ag/y =21.80° . . . v v v v vt v vt w oL 8
Cp egainst Cp; Agfly =30.97° + « v« v v v v v v v v v v v 9
Cp ageinst Op; Ay = 11.30° & & b v v e e e e e e e e 10
Cm against Cp; Ag/y =21.80° . . o o v v v v v vt 11
Cp agalnst Cr; Aefy = F0.9T° v v v e e e e e e e e 12
Cp egainst Cp; Agfy =11.30° . . . . . ... . oo 13
Cp against Cr; Ac/y = 21.80° . . 4 v 4 e e e e e e e e e e 1N
Cp against Cp; AC/)-I- = 30.970 e e s e e s e e e e e e e e e 15
Summary of serodynemic characteristics . . . . . . . . . . . . 16-21

SRR
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A brief discussion based primarily on the summsry data of figures
16 to 21 is presented herein. The slopes presented in the summary figures
have been averaged over a lift-coefficient range of £0.10. In order
to facllitate presentation of the data, staggered scales have been used
in many of the figures and care should be taken In identifying the zero
axis for each curve.

Lift and Drag Characteristics

Examinetion of figure 16 reveals certain general trends with respect
to the effects of wing plan form on lift-curve slope which are well known.
The lift-curve slope was reduced by either a reduction in aspect ratio
or an increase in sweep. It will be noted, however, that the change in
aspect ratio from 5 to 4 was much less significant than the change from
4 to 3.

Results presented in figure 16 indilcste that clipping the wing tips
to obtain reductions in aspect ratio had, in general, little effect on
the overall minimum drag characteristics through the range of Mach number.
However, a favorable sweep effect 1s noted in that decreases in the mini-
rum drag through the transonic speed range are obtained. Also shown in
figure 16 are the effects of sweep and aspect-ratio reductions on the _
variation of the drag-due-to-1ift parameter with Mach number. As would

3
aCi 2

were somevhat hlgher when the aspect ratio was reduced. Effects of sweep,
at least for the sweep range investigated, generally were small through-
out the Mach number range.

be expected, values of the drag-due-to-lift parameter generally

Comparisons of lift-drag ratios varying with lift coefficient are
shown in figure 17 for Mach numbers of 0.90 and 1.10. No very signifi-
cant advaentages are noted with regard to sweep for elther Mach number;
however, some reductions are evidenced when the aspect ratio is reduced.
In general, these reductions in lift-drag ratios with reduced aspect
ratio occur throughout the range of 1lift coefficient for both a Mach
number of 0.90 and 1.10. Maximum values of lift-dreg ratios for a
Mach number of 1.10 are conslderably less than those &t subsonic speeds.

Longitudinal Stability Characteristics
Any large change in the linearity of the pitching-moment curves is
undesirable especlally if the change is in an unstable direction. In

order to study to some extent the degree to which this linearity in the
pitching-moment curves is affected by wing plan form, some comparlsons
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of the effects of wing plen form on the overall shape of the pitching-
moment curves are shown in figure 18. These curves, for three representa-
tive Mach numbers, have been lifted from the basic date (figs. 4 to 15)
and are presented here for a more direct comparison of the effects of
sweep and aspect-ratio reductions. At Mach numbers of 0.80 and 0.906
aspect-ratio reductions of the more highly swept wings (Ac/h = 21.80

Ac/h = 30.970) were more significant than aspect-ratio reductions of the

wings with least sweep (Ac L = 11.500), especially in the moderste range

of 1ift coefficient where the unsteble changes in pitching-moment curves
were generelly reduced. For the case of wings of low sweep (Ac/h = ll.30°),
no significant changes in the linearity of the pitching-moment curves

were noted when the aspect ratio was reduced; however, a reduction in

static margin _gm occurred at low-1ift coefficients, which was also noted

and

for the higher sweep cases. It will be noted that the wings wilth less
sweep (particularly Ac/4 = 11.300) exhibit quite abrupt stable changes
in longitudinel stebility in a moderate lift-coefficient range, which
are of significance since undesireble trim changes and meneuvering
characteristics would likely be assoclated with a configuration having
this type of pitching-moment behavior. The pitching-moment-curve non-
linearity noted for Mach numbers of 0.80 and 0.90 for the sweep range
investigated generally did not occur at higher speeds, and the aspect-
ratio reductions were of little importance as Mach number increased

to 1.10.

In order to provide some generalization of the effects of geometric
variables on the linearity of the pitching-moment curves of highly tapered
wings (A = 0 to 0.30), the present resgults and those of references 1
and 2 have been interpreted in terms of the relation of the wings to a
boundexry which separates plan forms that become lncreasingly stable as
1lift is increased from those that become decreasingly stable as 1lift is
increased. The resulting correlation (fig. 19) is given in terms of
aspect ratio and quarter-chord sweep angle in the mamner adopted by
Shortal and Maggin in their well-known correlation glven in reference 3.
The criterion used in establishing the present boundary, however, differs
from that used by Shortel and Meggin who separated the plan forms on
the basis of stabilizing or destebilizing tendencies of the pitching-
moment curves in the vicinity of maximum 1ift. The present criterion
considers devietlions of the pitching-moment curve at any positive 1lift
coefficient below maximm 1ift from its slope at zero lift (fig. 19).

If at any 1ift coefficient within the specified range the slope S_m

CrL,
is less negative than at zero 1lift, the plan form is indicated by a solid
symbol; whereas, if ng at positive 1lift is alwaeys more negative than

L
at zero 1lift, the plan form is indicated by an open symbol. The boundary

OOy
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separating these stability characteristics thereby defines plan forms
having essentially linesr pitching-moment characteristics. Such a
boundary provides a convenient basis for the selection of plan forms
most readily adaptable to airplanes with high or low tail locations or
to tailless alrplanes. The boundary obtained is considered applicable,
however, only to teper ratios in the range considered herein - that is,
between teper ratios of 0 and 0.30. Note that plan forms on the stable
side of the present boundary are defined by more restricted ranges of
sweep angle and aspect ratio then are the plan forms on the stable side
of the Shortal-Maggin boundary. v

The variation of the aerodynsmic center with Mach number as affected
by sweep and aspect ratio is shown in figure 20. The effect of aspect-
ratio reduction is to shift the aerodynamic center forward a rather con-
stant amount throughout the Mach number range without much effect on
the overall variation with Mach number for a given sweep angle. The
sweep effect noted is generelly consistent with past results inasmuch
as the maximum rearward shift of the aerodynamic center from subsonic to
supersonic speeds is somewhat reduced as sweep angle incresses.

In order to i1llustrate some trends in changes with 1ift coefficient
of the locations of the effective longitudinal and lateral ceanters of

pressure, data for Mach numbers of 0.90 and 1.10 are presented in figure 21.

The centers of pressure will be referred to as effective centers of pres-
sure, inasmuch as the lateral effective center of pressure was obtained
by division of the root bending moment due to 1ift by the 1ift and the
longitudinal effective center of pressure was obtained.by division of
the pitching moment by the 1ift. The changes in both longitudinal and _
lateral effective center-of-pressure location with 1lift coefficient i
(for all sweep angles investigated) at a Mach number of 1.10 are con-
siderably smaller than changes at a Mach number of 0.90. The wing plan
form which provides the least change with lift coefficlent in longitudi-
nal effective center-of-pressure location experiences considersble inward
shifts with 1ift coefficlent in the lateral effective center of pressure
for either Mach number (fig. 21(c)). As pointed out in reference 1, such
inward shifts are associated with tip separation. Clipping the tips
generally relleves to some extent this inward movement of the lateral
effectlve center of pressure with lift coefficient for both Mach mumbers,
but it also results in somewhat increased overall variation of the longi-
tudinel effective center-of-pressure location with 1ift coefficient. _
The wing plan form which provides the least change in the lateral effec-
tive center-of-pressure . location with 1ift coefficient also experiences
the greatest change in the longitudinal effective center-of-pressure
location (fig. El%a)) This effect was also noted for the investigation
of the highly tapered wings reported in reference 1. Mbderately large
changes in the lateral center of pressure are noted when the longitudinal
changes in center of pressure are at a minimum )

powers e
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CONCLUSTIONS

Results of an investigation, by the transonic-bump method, of the
static longitudinal serodynamlc characteristics of a series of highly
tapered thin wings with varying degrees of sweep and different aspect
ratios, obtained by clipping the tips of the basic pointed wings, indi-
catte the following conclusions:

1. In general, the 1ift and drag cheracteristics varied with changes
in sweep angle and aspect retlo in essentially the manner expected on the
baslis of previous research.

2. The wings of smallest sweep (11.30°) provided the smallest changes
in lateral center of pressure with increasing 1ift, but the greatest
changes in longitudinal center of pressure with increasing lift. Moder-
ately large changes in lateral center of pressure are noted when the
longitudinal changes 1n center of pressure are at a minimum.

3. A boundery was established which separates highly tapered wings
showing increasing stability wilth increasing lift from those showing
decreasing steblility with lncreasing 1lift. The boundary so established
is defined by somewhat smasller values of sweep angle and aspect ratio
than is the boundary established on the basis of a somewhat different
criterion by Shortal and Maggin in NACA Technical Note 1093.

Langley Aeronsutical Laboratory,
Netional Advisory Committee for Aeronautics,
Langley Field, Va., August 31, 1956.
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